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ABSTRACT 

 

In charged particle beams, one of the roles played by space charge is to couple the transverse and 

longitudinal dynamics of the beam.  This can lead to very complex phenomena which are 

generally studied using computer simulations.  However, in some cases models based on 

phenomenological or analytic approximations can provide valuable insight into the system 

behavior.  In this paper, we employ such approximations to investigate the conditions under 

which all the slices of a space charge dominated electron beam with slowly-varying current 

could be focused to a waist with the same radius and at the same location, independent of slice 

current, and show that this can be accomplished approximately if the initial transverse-

longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate 

for the transverse-longitudinal correlation introduced onto the beam in the drift section.  The 

validity of our approximations is assessed by use of progressively more realistic calculations.  

We also consider several design elements of electron guns that affect the initial correlations in 

the beams they generate. 

   

* Electronic mail:  john.harris@colostate.edu. 

 



2 
 

I. Introduction 

 In charged particle beams, space charge couples the transverse and longitudinal dynamics 

of the beam, so that longitudinal variation in the beam's current leads to different rates of radial 

expansion along its length.  One well-known result of this is the growth in the projected 

emittance of the beam, which occurs when space charge causes different regions of the beam to 

evolve differently in phase space, so that the area occupied by the entire beam in phase space 

increases significantly, even though the emittance of each slice of the beam remains unchanged.  

Projected emittance growth motivated the development of emittance compensation [1,2], which 

is of particular importance in photoinjectors and other short pulse machines.  However, the need 

to properly handle the effects of space charge is not limited to photoinjectors.  Techniques to 

deal with this coupling must be employed in any machine where space charge is significant and 

the loss of particles from the lower-current regions of the beam cannot be accepted.  This is 

particularly true in machines where the beam is generated with a significant initial transverse-

longitudinal correlation [3,4] and must be transported through a channel while avoiding beam 

loss and heating of metallic structures [5] or charging and breakdown of dielectric-lined 

structures [6,7] placed in close proximity to the beam edge.  While these effects can be very 

complicated and are generally investigated using computer simulations, having design tools or 

scaling relations based on phenomenological or analytic approximations can be of great value in 

understanding the design trade space.  Such relations are often easily developed for idealized 

beam transport systems, but they are of limited value unless they also incorporate the transverse-

longitudinal correlation generated in the gun and injection region, which determines the initial 

conditions of the beam on injection into that transport system.  Alternatively, those simple 

models could be used if the injection region itself were designed in such a way as to remove the 
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initial transverse-longitudinal correlation, for example by throwing each slice of the beam to a 

waist with radius and location which is independent of slice current.  The beam could then be 

handed off to the downstream transport system with an initial radius and divergence which are 

independent of slice current, and therefore amenable to simple approximate models for the 

transport system itself. 

 To develop such a model, we must first choose an injector architecture;  the simplest 

architecture in widespread use is that of an electron gun immediately followed by a solenoid lens 

and drift section (Figure 1).  We next require simplified, analytically-tractable models for each of 

the three elements.  For the electron gun itself, simulations indicate that low voltage electron 

guns operating in the DC limit produce beams with initial radii and divergences that can be 

expressed to good approximation as linear functions of beam current, with the coefficients 

depending on the gun geometry [3,4], while the solenoid can easily be approximated as a thin 

lens.  For the drift section, as shown in Figure 1 where each slice is thrown to a waist at a 

common location, we simply need a model for beam expansion from a waist.  While the well-

known quadratic model for expansion of a cold beam is often used [8], we will instead use a 

more complicated model, introduced in Ref. [9], which produces reasonable accuracy over a 

wider range of beam radii.    

 Our approach is to combine these three models to describe the evolution of each slice of 

the beam.  Each of these models incorporates assumptions which will be described in detail.  

However, the fundamental assumption is that every slice of the beam can be treated 

independently of every other slice.  This implies that there is no longitudinal evolution of the 

beam, and a variation in current which is slow compared to the transit time across the diode.  

Beams with large, slow variation in current but negligible variation in energy, as assumed here, 
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can be achieved in DC guns where the emission current is being modulated, rather than the 

anode-cathode voltage.  This modulation can be accomplished in a number of ways, including 

the use of a gridded cathode [7] or gated field emission arrays [11,12], or by using a long-pulse 

laser to photomodulate the beam from a thermionic cathode [13,14].  Such deliberate current 

modulation might be used, for example, to introduce a seed signal onto the beam for interaction 

with a slow wave structure in a high power microwave source [7].  Current modulation is also 

likely to occur in guns using flashboard plasma cathodes due to changes in the gun perveance 

caused by the expansion of the plasma across the anode-cathode gap [15,16,17], unless a 

sufficiently short extraction voltage pulse is used [18].  Finally, slow changes in beam current 

could also occur in high power machines due to back-bombardment and subsequent heating of a 

thermionic cathode by ions or electrons.  And while electron back-bombardment is primarily of 

concern in RF guns [19], the approach discussed here could be of use to the designers of systems 

using those guns if their primary concern was minimizing changes in the beam spot size 

associated with a slice of the beam extracted at a particular RF phase caused by cathode 

temperature changes occurring much slower than the RF period. 

 Our objectives in this paper are therefore twofold:  first, from a theoretical standpoint, to 

combine the simple models discussed above and assess the validity of the resulting overall 

model;  and second, from a practical standpoint, to develop a simple design tool for high current 

injectors.  We begin by assembling our simplified models, working backward from the waist, in 

order to establish requirements on the electron gun, and noting along the way various limitations 

on those models.  We then compare the full model to a sample configuration, again looking to 

validate its utility.  Finally, we will consider the role played by electron gun design in 



5 
 

establishing the beam's initial transverse-longitudinal correlation, identifying design elements 

that could enable generation of the initial beam configuration required by our model. 

II. Model Development and Limitations. 

A. Drift Section  

1. Model 

 Our first step is to consider the beam evolution between the lens and waist.  Because of 

the time-reversibility of the envelope equation, the envelope will be symmetric about the waist, 

and so we can use our approximation for the expansion of a cold beam from a waist of radius wr , 

introduced in Ref. [9], to model the compression of a beam slice with current I : 
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Here   and   are the relativistic factors, 0I  is the characteristic current (17kA for electrons), 

and z  is the magnitude of the displacement away from the waist.  The beam divergence is then 
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with the minus sign used here because the beam is undergoing radial compression, rather than 

expansion.  The radius and divergence of the beam are related at any location by 

  
1.617

b w br r r
z

   ,         (3) 

which defines a line in trace space along which the beam radius and divergence for each slice of 

the beam must lie (Figure 2).  Only part of this line will be populated, bounded on one side by 

the radius and divergence of the highest-current slice of the beam (point A ), and on the other by 
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the radius and divergence of the lowest-current slice of the beam (point B ).  If the beam current 

varies from zero to maxI , point A will be given by 
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while point B will be given by  

  ,0wr .           (5) 

2. Limitations 

 This model makes two primary physical assumptions.  The first, mentioned earlier, is that 

every slice of the beam evolves independently of every other slice, so that there is no 

longitudinal evolution in the beam.  Longitudinal evolution in beams typically occurs much more 

slowly than transverse evolution, but very rapid changes in beam current can generate space 

charge waves leading to significant changes in the longitudinal pulse shape, interference effects 

[20], and other complicated behavior in convergent beams injected into transport channels [21], 

none of which is incorporated into our model.   

 Second, the model assumes a zero-emittance beam.  Zero-emittance beams are a 

theoretical abstraction, but a useful one, and within this assumption the model provides 

reasonably good accuracy; when calculating the envelope of a beam launched from a waist, the 

maximum error between Eq. (1) and a direct integration of the envelope equation is about 5%, 

while the average error is about 2% over the range 6.6w wr r r  [9].  All other things being 

equal, space charge becomes a relatively more important factor as beam radii become larger, 

while emittance becomes a relatively more important factor as beam radii become smaller.  

Therefore, our assumption should be acceptable as long as the emittance-limited spot size is 
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much smaller than the actual beam waist.  The beam envelope in the absence of space charge and 

focusing is [8] 
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where 0r  is the initial radius, 
0r
   is the initial divergence,   is the emittance, and z  is the 

distance along the direction of propagation;  this implies an emittance-limited waist radius of 
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As an example, Figure 3 shows the case of a 100 mA, 50 keV beam with initial radius of 2.969 

mm and divergence of -0.016, predicted by Eqs. (1) and (2) to give a waist of 1 mm at a location 

20 cm downstream.  The black curve is given by Eq. (1), while the blue, gray, red, and green 

curves are from numerical integration of the envelope equation [8]  
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where the primes denote differentiation with respect to z , 2

0k  defines the external focusing 

strength (which is zero for this calculation but will be used later), and assuming emittance values 

of zero, 4.02 m, 8.12 m, and 17.00 m, corresponding to emittance-limited waist sizes found 

from Eq. (7) of 0, 0.25 mm, 0.5 mm, and 1 mm respectively.  These curves confirm the validity 

of our assumption that when the emittance-limited waist size is much smaller than the actual 

waist, our model for beam transport in a drift is reasonably accurate. 

B. Beam Configuration Upstream of the Thin Lens 
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 Immediately downstream of the lens, the beam must have the radius ( )br I  and divergence 

( )br I given by Eqs. (1) and (2).  Immediately upstream of the lens, the radius must therefore be 
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and the divergence must be 
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Eqs. (9) and (10) again define a line in trace space, 
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along which the beam slices lie (Figure 4).  We can again define two key points corresponding to 

those shown in Figure 2.  The point B , associated with the zero-current slice of the beam, will 

be at 

 2

0( , )w wr r k L ,          (12) 

and the point A , associated with the peak-current slice of the beam, will be at 
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C. Electron Gun 

1. Model 

 We next consider the electron gun itself.  The space charge driven transverse-longitudinal 

correlation occurring in DC guns can be viewed as the result of the competition between the 
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time-independent focusing forces in the gun and the time-dependent transverse space charge 

forces in the beam.  Simulations of low-voltage electron guns employing electrostatic focusing 

show that the beam radius and divergence at the anode can be approximated very well as linear 

functions of the beam current, with the coefficients of the linear fitting functions depending on 

the gun geometry [3].  This provides a convenient way to parameterize the beam's radius and 

divergence at the gun exit.  At that location, the radius r  and divergence r  of each slice of the 

beam would depend on the beam current I  according to 

 0 1r a a I            (14) 

and 

 0 1r b b I   .          (15) 

The beam radius and divergence are then related by 
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which defines a line in trace space along which the radius and divergence of the beam edge for 

each slice of the beam must lie (Figure 5).  This line is populated between a point B defined by 

  0 0,a b            (17) 

corresponding to the zero-current slice of the beam, and a point A  defined by 

  0 1 max 0 1 max,a a I b b I           (18) 

corresponding to the peak-current slice of the beam containing a current maxI .   

2. Limitations. 

 The linear parameterization of initial beam radius and divergence employed here was 

introduced in Ref. [4] based on electron gun simulations reported in Ref. [3].  In those 

simulations, performed using the codes CST Particle Studio [22], SPIFFE [23], and TRAK [24], 
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DC electron guns having a variety of anode-cathode spacings, voltages, and focusing electrode 

angles were operated at a series of currents from "zero current" to the space charge limit.  No 

beam extraction aperture was included, both to replicate guns where an anode grid is used 

[25,26], and to avoid complications associated with beam scraping and particle loss during 

transmission through the aperture [27].  Figure 6 shows a typical example of one of these 

simulations, using an anode-cathode spacing of 25 mm, emission surface radius of 4 mm, and a 

focusing electrode angle of 100° rather than the typical 67.5° Pierce angle [28].  This angle 

causes the beam arriving at the anode to be diverging at all currents;  although unusual, guns 

designed to deliberately defocus the beam in the diode region have been employed in special 

roles, such as the original injector for the FXR linear accelerator at Lawrence Livermore 

National Laboratory [25].  The trace space diagram shows the results of 17 runs at currents 

between 0.1 mA ("zero current," B ) and 1.33 A (the space charge limited current, A );  note that 

these points fall along the line defined by Eq. (16), indicating excellent agreement between the 

simulation results and the inferred linear parameterization. 

 As the previous simulations were performed at nonrelativistic voltages between 0.5 kV 

and 20 kV, a valid question is whether a linear parameterization is also useful for higher energy 

guns, and guns without anode grids.  For these purposes, we limit ourselves to voltages of 500 

kV and lower;  at voltages higher than this, the problems of preventing electrical breakdown in 

both DC and pulsed electron guns become very challenging, and the design of insulating 

structures to control these breakdown processes, particularly vacuum surface flashover [29] 

remains an active area of research [30,31,32].  Accordingly, new simulations were performed of 

apertured electron guns at 100 kV, 300 kV, and 500 kV using the code TRAK [24], as shown in 

Figure 7.  In all cases, the focusing electrode angle was 67.5°, cathode radius was 0.5 cm, anode 
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aperture radius was 0.6 cm, and anode-cathode distance was 3 cm.  One diagnostics plane was 

placed in the plane of the aperture, and three more were placed 0.6 cm, 1.2 cm, and 1.8 cm 

downstream of the aperture plane.  Data was extracted by taking the beam edge radius and 

divergence directly from the phase space data, as well as two different statistical methods.  

Figure 8 shows the beam radius and divergence at the four diagnostic locations for the gun at 500 

kV using data extracted directly from the phase space plots generated by the simulation, 

compared to linear fitting functions for each case.  This combination of voltage and data 

extraction method actually generated the least linear results of all the nine combinations tried.   

While there is some curvature in the data, suggesting that a quadratic fit would yield a closer 

result, it is also clear that the linear approximation for beam radius and divergence as a function 

of beam current remains useful even for apertured guns with voltages entering the relativistic 

regime [33]. 

 We will return to a discussion of electron gun design, and the impact of their design on 

transverse-longitudinal correlations introduced in the gun, in Section IV. 

D. Matching of Electron Source and Transport Channel 

 To complete the model, note that the trace space configurations shown in Figures 4 and 5 

have been deliberately drawn to share the same general shape.  In order to approximately match 

the desired trace space configuration defined by Eqs. (9) and (10) to the type of trace space 

configuration we expect from electron guns as defined by Eqs. (14) and (15), we can simply 

associate the zero-current endpoints B
 
and the peak-current endpoints A  in the two figures.  

Equating Eq. (12) with Eq. (17), and Eq. (13) with Eq. (15), yields the conditions 

 0 wa r ,          (18) 



12 
 

 

1.617
1.6172 1

0.617 1.617 2
1 max3 3

0

4
0.303 w wa r z I

I  


  

  
 

,      (19) 

 2

0 0wb r k L ,          (20) 

and 

 

1.617
1.6172 1

2 0.617 1.617 2
1 0 max3 3

0

1.617 4
0.303 w w

w

b k L r z I
z I  


   

    
   

.    (21) 

These coefficients define an approximate linear parameterization of the desired initial 

conditions, using the form of Eqs. (14) and (15).  We must emphasize that this is only an 

approximate parameterization, which holds exactly for the peak- and zero-current slices only.  

Use of these parameters with Eqs. (14) and (15) will effectively distribute the intermediate slices 

between the peak- and zero-current slices as if they had a linear dependence on current, instead 

of the actual 1.617/2I  dependence required by Eqs. (9) and (10).  Thus while Eqs. (18) - (21) 

replicate the trace space geometry of the desired initial beam, they incorrectly replicate the 

"internal configuration" of the beam within that area in trace space.  Despite this, since the 

bounding peak-current and zero-current cases are treated correctly, it is reasonable to think that 

this approximate approach may still work relatively well.   

 It is also interesting to note the limitations imposed on possible solutions by Eqs. (18) - 

(21).  First, the waist radius is constrained by Eq. (18).  The na  and nb  parameters depend solely 

on the gun geometry and voltage, and so must be constants, and therefore Eq. (18) indicates that

wr  must also be independent of beam current or solenoid focusing strength.  This is because there 

is no space charge in the zero current slice to drive radial expansion, so its radius at the waist and 

its radius on leaving the lens must be the same [34].  And since we have assumed a thin lens, the 
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radius of the zero current slice will not change while passing through the lens, forcing 0wr a , 

and implying wr  to be a constant defined by the gun geometry and which must be the same for 

every slice of the beam.    

 Second, Eq. (20) implies that the lens strength 2

0k L  is defined by the ratio of the zero-

current beam radius and divergence produced by the gun.  This is because one function of the 

lens is to adjust the divergence of the zero current beam.  And since 2

0 0k L   for a solenoid, Eq. 

(20) also implies that the zero-current slice of the beam must be initially diverging 0( 0)b  .  This 

is a condition not normally found in electron guns, which are more typically designed to produce 

converging beams or rectilinear flow at full current [28], and therefore are converging at low 

current. 

 Similarly, Eqs. (19) and (21) imply that wz  and maxI  may also take on a single value;  for 

wz  this is 
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and for maxI  this is 
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Thus, specifying the gun design specifies all other system parameters. 

III. Example Case 

A. Applying the Model 
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 To study the validity of our models, we now use them to consider an example case.  We 

begin by computing the required electron gun parameters, and then progressively relaxing our 

assumptions. We consider a beam of energy 75 keV, whose current varies from 0 to 1 A, 

generated in an electron gun using a thermionic cathode of radius kr = 5 mm operating at a 

temperature of T = 800 K.  This provides an intrinsic thermal emittance of 6.5 m, as found 

from the equation [8] 

 
2

2 k B
r k T

mc



 ,         (24) 

where Bk  is the Boltzmann constant and 2mc  is the rest mass energy of the electron.  For this 

example, we choose to focus the beam to a waist of radius 5 mm located 25 cm downstream 

from the gun exit.  Immediately downstream of the thin lens, Eq. (1) predicts a radius of 9.0 mm, 

while Eq. (2) predicts a divergence of -0.026.  The emittance-limited waist radius is then 

predicted by Eq. (7) to be 0.25 mm, which is much smaller than the desired waist, confirming 

that our assumption of a cold beam is satisfied in this case.  Choosing a lens strength of 8 m
-1

, 

our model then calls for an electron gun with linear parameters of 0a = 0.0050 m, 1a = 0.0040 

mA
-1 

, 0b = 0.04, and 1b = 0.00613 A
-1

, calculated from Eqs. (18) - (21). 

 To assess the usefulness of our approach, we now gradually relax our previous 

assumptions, with the comparisons of beam envelope shown in Figure 9 and the comparisons of 

trace space configuration shown in Figure 10.  Envelopes and trace space information are shown 

for beam slices with 100%, 80%, 60%, 40%, 20%, and 0% of the peak current, and trace space 

plots are shown for the beam configuration just upstream of the lens, at the intended location of 

the waist, and at a distance of 2 wz  from the gun.   
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 The first row in each figure shows the idealized case, using values calculated from Eq. 

(1), modified by taking wz z z   upstream of the waist and 
wz z z   downstream of the 

waist.  As intended, all slices of the beam converge to the desired waist at the desired location.  

B. Comparison to Envelope Equation  

 The first question to be answered is, what error is introduced by our use of a simple 

model for beam transport?  To answer this, we calculated the beam envelopes using the envelope 

equation, Eq. (8), using the desired initial conditions upstream of the lens, Eqs. (9) and (10) and 

assuming zero emittance.  To replicate a thin lens, a lens length of 0.5 mm was used.  The results 

are shown in the second row of Figures 9 and 10.   

C. Desired and Interpolated Initial Conditions 

 We next switch from using the desired initial conditions calculated using Eqs. (9) and 

(10), to the interpolated initial conditions calculated from Eqs. (14) and (15) using the linear 

parameters calculated using Eqs. (18) - (21).  For clarity, we also show these initial conditions in 

red in Figure 10.  As described above, the zero current and peak  current slices overlap perfectly, 

but there is an imperfect match of the remaining slices.  This results in only minor changes. 

D. Emittance 

 The next row in the figures is identical, except that the cathode thermal emittance value 

calculated above is now used for the beam emittance.  Again, this results in only minor changes. 

E. Thick Lens 

 Finally, we relax our assumption of a thin lens, and instead use a lens which is 3 cm in 

length;  the thick blue line in this figure indicates the shape of the function 0 (z)k .  Now we see a 

more significant change, with the beam waists for the different current slices being thrown at 

different locations.  Also shown on this plot, in green, is the trace space configuration of the 
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beam calculated using the thicker lens at the location of the waist in the peak-current slice, rather 

than the desired location of the beam waist, showing the minor difference in trace space 

configuration. 

 Note that in all of these cases, the beam configuration in trace space at the desired 

location of the waist was well behaved, without formation of any significant low-current 

secondary distribution due to suboptimal focusing as is sometimes observed [35].  We therefore 

conclude that the technique discussed here is a reasonable approximate approach to specify 

electron gun outputs for matching into a focusing lens for focusing to a waist.   

IV. Implications for Electron Gun Design 

 While the approach described above provides a technique to estimate the required 

electron gun parameters needed to compensate for space charge effects in the lens and drift 

system considered here, it does not establish whether those parameters can actually be achieved 

in any electron gun.  In this section, we discuss the requirements imposed on electron guns by 

this model, with an emphasis on understanding the electron gun design elements governing the 

transverse-longitudinal correlation generated by the gun. 

 First, as mentioned above, the transport system shown in Figure 1 requires that the 

electron beam arriving at the lens be diverging, even in the zero-current limit, and that the lens 

strength be adjusted to eliminate that zero-current divergence.  This must be the case because the 

zero-current slice of the beam has no appreciable space charge to counteract any initial radial 

convergence as it propagates from the lens to the desired waist location.  This requirement 

eliminates traditional Pierce guns [28], which are designed to produce zero-divergence beams at 

full current and therefore provide a converging beam in the zero current limit. 
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 This suggests the use of a Pierce-like gun using a larger focusing electrode angle, such as 

the 100°  angle gun shown in Figure 6, which will provide diverging beams at all values of beam 

current.  However, a comparison of the trace space distribution produced by this gun (Figure 6) 

with the desired trace space configuration (Figure 4) shows an important difference:  the zero-

current point ( B ) and the peak-current point ( A ) fall on the lower bounding line for the 100°  

angle gun, while they fall on the upper bounding line for the desired trace space configuration.  

To understand the source of this discrepancy, compare Eqs. (11) and (16).  Each equation 

consists of two terms.  The first term is linear in r , with the coefficient determining the slope of 

the bounding line along which points A  and B  fall.  The second term determines where that 

bounding line crosses the r -axis.  If this second term is positive, then A  and B  must fall along 

the upper bounding line, which intercepts the r -axis at a positive value of r ;  if the second 

term is negative, then A  and B  must fall along the lower bounding line, which intercepts the r -

axis at a negative value of r .  Eq. (11) shows that for the desired distribution, the intercept 

scales with the ratio of beam waist radius and waist location -- 1.617 /w wr z  -- and therefore must 

be positive, putting A  and B  on the upper bounding line.  This imposes an additional 

requirement on the electron gun:  in order to match the desired trace space configuration, any 

potential gun must generate a beam with linear parameters chosen so that its peak and zero-

current slices also fall along the upper bounding line, and so the second term in Eq. (16) -- 

0 0 1 1/b a b a  -- must also be positive.  However, this quantity is negative for the 100°  angle gun 

shown in Figure 6;  in fact, it is negative for all the electron gun configurations considered by us 

in Refs. [3] and [4], as well as the 100 kV, 300 kV, and 500 kV apertured configurations in the 

new TRAK simulations.  What design features of these guns cause this quantity to be negative? 
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 A clue to this lies in Figure 6 itself.  Note that in both the peak current case ( A ) and the 

zero-current case ( B ), the beam envelope is virtually linear with position except for the region 

closest to the source.  This is the location where the beam density is highest, and therefore where 

the radial space charge will be strongest, not only because in a diverging gun the beam radius 

will be smallest here, but also because of the beam acceleration which leads to a density scaling 

with 
2/3z  even in the ideal, divergence-free case assumed by the Child-Langmuir law [36]. 

Additionally, the electrode shaping which generates the time-independent focusing or defocusing 

effect in the gun was only employed on the cathode side.  The apparent result of these effects 

was to cause the majority of the focusing or defocusing action to occur near the cathode, with the 

trajectories far from the cathode being roughly linear in position. 

 Now, for the sake of argument, let us assume that all of the focusing or defocusing effect 

occurred at the cathode surface, and that the electron beam envelope was linear in position for 

the rest of its travel across the anode-cathode gap, as shown in the portion of Figure 11 between 

the cathode plane and anode plane.  In that case, for zero current, 0I  , the radius would be 

 0 0k AKa r b d  ,         (25) 

where kr  is the cathode radius and AKd  is the anode-cathode distance.  Similarly, for peak 

current, maxI I , and radius would be 

  0 1 max 0 1 maxk AKa a I r b b I d    .       (26) 

In this case, the second term in Eq. (16) becomes 

 0 1
0

1

k

AK

a b r
b

a d
   ,         (27) 
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which is always negative, and therefore requires the peak-current and zero-current points A  and 

B  to fall along the lower bounding line -- as, in fact, they do.  This scaling holds remarkably 

well for our simulation data given its simplicity (Figure 12). 

 We therefore conclude that the requirements developed in Section II are unlikely to be 

satisfied by an electron gun in which the majority of the defocusing action occurs near the 

cathode, and consider whether shifting some of the defocusing to the anode plane by addition of 

an electrostatic lens can achieve the required initial configuration.  We return to Figure 11, but 

now assume a thin lens in the anode plane followed by a drift space which is short enough that 

space charge can be neglected.  The lens is assumed to provide a change in divergence equal to  

  0 1

1
b a a I

f
   .         (28) 

The beam divergence at the image plane is then 

  0 1 0 1 0 1

1
B B I b b I a a I

f
     ,       (29) 

while the beam radius at the image plane is 

    0 1 0 1 1 0 1A A I a a I d B B I     ,       (30) 

where the variables are capitalized to distinguish the linear parameters in the image plane from 

those in the anode plane.  This implies 

  0 0 0

1
k AKB b r b d

f
   ,        (31) 

 1 1 1 AKd
B b

f

 
  

 
,         (32) 

  1
0 0 1 0 0k AK k AK

d
A r b d d b r b d

f
     ,      (33) 

and 
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 1
1 1 1

AK
AK

d d
A b d d

f

 
   

 
,        (34) 

and therefore 

 0 1
0

11
1

k

AK
AK

A B r
B

d dA
d d

f

  

 

,       (35)  

which reduces to Eq. (27) in the limit 1 0d  , as expected.  If the lens is defocusing, 1/ 0f  , 

which provides the opportunity for Eq. (35) to become positive, therefore allowing the trace 

space configuration shown in Figure 4.  Identifying Eq. (35) with the second term in Eq. (11) 

gives an expression for the required lens strength: 

 
1 1

1 1 1

1.617

k w

w AK AK

r z

f r d d d d

 
    

 
.       (36) 

Assume the following typical values:  cathode radius of 0.5 mm, drift distance of 5 cm between 

the electrostatic lens and the solenoid, waist radius of 1 cm, distance to waist of 10 cm, anode-

cathode gap of 5 cm.  This gives a required lens strength of -52.3 m
-1

.  

 Finally, we use Eq. (36) to ask whether the aperture lens occurring naturally at the exit of 

an electron gun in the absence of an anode grid provides sufficient defocusing.  The strength of 

that lens will be [8]: 

 
1 1

4 4AK AK

V

f V d


    ,        (37) 

assuming /AK AKV V d  , which is clearly smaller than the quantity in Eq. (36).  Additional 

defocusing is therefore required to achieve the desired beam configuration.   

V. Summary 
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 In this paper, we considered the requirements for a current-modulated, space charged 

dominated electron beam to be focused to a waist with radius and location independent of slice 

current in a simple injector consisting of an electron gun, lens, and drift section.  Each of the 

three elements was initially treated using phenomenological or analytic approximations, and the 

assumptions and range of applicability of these approximations was studied.  The approximation 

introducing the most error in the tested cases was the use of a thin lens model for the solenoid.  

To achieve a waist which was independent of current, the transverse-longitudinal correlation 

imposed on the beam by the electron gun must be tailored to compensate for the transverse-

longitudinal correlation imposed on the beam during its travel through the lens and drift section, 

effectively serving in a "feed forward" role.  This required initial correlation was specified in 

terms of the other system properties using a linear parameterization of radius and divergence on 

slice current, first developed for low energy electron guns using anode grids, but shown here to 

also provide a reasonable description of the beams generated in apertured electron guns at 

voltages up to 500 kV.  This parameterization was used as a tool to investigate the impact of an 

electron gun's design on its ability to achieve the required initial transverse-longitudinal 

correlation.  It was found that neither defocusing occurring purely at the cathode nor the 

defocusing associated with aperture lensing were sufficient, but that the addition of extra 

electrostatic defocusing at the anode could achieve the desired effects.  
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Figure 1.  System geometry.  A current-modulated DC electron gun is assumed to be 

immediately upstream of the thin lens.  Insets at bottom indicate the beam's desired configuration 

in trace space before the lens (corresponding to Figure 4), after the lens (corresponding to Figure 

2), and at the waist. 
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Figure 2.  Trace space construction for a beam compressing to a waist of radius wr .  In the 

second quadrant, this line is populated between point A, corresponding to the peak-current slice 

in the beam and having coordinates given by Eq. (4);  and point B, corresponding to the zero-

current slices. 

  



27 
 

 

Figure 3.  Beam envelopes for a 50 keV, 100 mA beam with initial radius of 2.969 mm and 

initial divergence of -0.016, calculated using Eq. (1) (black) and from Eq. (8) with emittance 

values of zero (blue), 4.02 m (gray), 8.12 m (red), and 17.00 m (green). 
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Figure 4.  Required trace space configuration just upstream of the lens, showing the orientation 

of the zero current slice (point B , location given by Eq. (12)) and peak current slice (point A , 

location given by Eq. (13)). 
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Figure 5.  Trace space diagram for a beam produced with initial linear dependence of radius and 

divergence on beam current, showing the orientation of the zero-current slice (point B , with 

location  0 0,a b  ) and peak current slice (point A , with location  0 1 0 1,pk pka a I b b I  ).    
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Figure 6.  Simulations of a simplified 10 keV electron gun using CST Particle Studio.  Anode-

cathode spacing is 25 mm, and the focusing electrode angle is 100° with respect to the gun axis.  

The trace space figure at left shows an overlay of the beam orientation at the anode for 17 

simulation runs at currents varying between 0.1 mA ( B ) and 1.33 A ( A , the space charge limit);  

the corresponding simulated beam trajectories are shown at right, with particle energy denoted 

by color.  The dotted lines in the trace space figure are computed from Eq. (16) using the linear 

parameters obtained for this configuration ( 0a = 0.00672 m, 1a =0.00335 mA
-1

, 0b =0.130, 1b

=0.152A
-1

), showing excellent agreement between the simulation results and the linear 

parameterization. 
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Figure 7. TRAK simulation of a simplified apertured electron gun, showing equipotential lines 

and typical electron trajectories for the 300 kV case, operating at a space charge limited current 

of 31.4 A.  Simulations were performed with anode-cathode voltages of 100 kV, 300 kV, and 

500 kV.  The focusing electrode angle was 67.5°, cathode radius was 0.5 cm, anode aperture 

radius was 0.6 cm, and anode-cathode distance was 3 cm.  One diagnostics plane was placed in 

the plane of the aperture, and three more were placed 0.6 cm, 1.2 cm, and 1.8 cm downstream of 

the aperture plane. 
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Figure 8.  Beam radius and divergence for the 500 kV gun using edge radius and divergence data 

extracted directly from the phase space data generated by the simulation, compared to linear 

fitting functions.  Data extracted at the anode plane (black), and at 0.6 cm (red), 1.2 cm (green), 

and 1.8 cm (blue) downstream from the anode plane. 
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Figure 9.  Beam envelopes for example case.  Letters correspond to subsections in Section III.  
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Figure 10.  Trace space configurations for beam at start plane (left), nominal waist location 

(center), and twice the nominal waist location (right).  Letters correspond to subsections in 

Section III.   
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Figure 11.  Configuration for beam transport in diode with straight line paths. 
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Figure 12.  (Left) Simulated electron gun configuration, with anode-cathode voltage of 10 kV, 

anode-cathode distance AKd  of 25 mm, cathode radius kr  of 4 mm, and variable focusing 

electrode angle  .  (Right) Comparison of simulation results with model assuming all focusing 

action occurs at the cathode surface, showing beam radius at the anode as a function of focusing 

electrode angle at zero current (blue) and at the space charge limit (red).  The solid line indicates 

actual simulation results, while the dotted line indicates predictions from Eq. (25) and Eq. (26) 

using values of na  and nb  tabulated in Ref. [4]. 

 


